Synchronous Motors & Sync Excitation Systems

Presented by Bill Horvath, TM GE Automation Systems
At Western Mining Electrical Association
Rapid City, North Dakota
May 2009
Dragline Sync Motors and Excitation

• Why use sync motors?
• Sync Motor & MG Set Basics
• Sync Motors for Excavators
• Sync field excitation & Issues
• Sync Motor Starting & Protection
Reactive Power Basics

- **Circuit elements themselves are “pure” lead or lag**
- **Most loads are a mix, with a real \([\text{kW}]\) and reactive \([\text{KVAR}]\) part**
- **Real and reactive parts are at right angles**
Reactive Power Basics - 2

- Circuit elements themselves are “pure” lead or lag
- Most loads are a mix, with a real [kW] and reactive [KVAR] part
- Real and reactive parts are at right angles
- + KVAR = flow is into load
- + kW = flow is in to load
- Leading PF = KVAR and kW are opposite in flow to or from load

\[KVA \]
\[+ \text{ KVAR} \]
\[\Theta = \text{lag} \]
\[+ \text{ Power kW [in]} \]

Power factor = \(\cos (\theta)\)
Why Use Sync Motors?

REACTIVE POWER VOLTAGE CONTROL!

NO SYNCHRONOUS MOTOR

- MOTORIZING CASE: FLOW OF WATTS AND VARS TEND TO DECREASE VOLTAGE AT BUS 2 AND 3.
- REGENERATING CASE: FLOW OF WATTS AND VARS TEND TO INCREASE VOLTAGE AT BUS 2 AND 3.

RESULT: LARGE VOLTAGE SWINGS AT BUS 2 & 3

WITH SYNCHRONOUS MOTOR

- MOTORIZING CASE: FLOW OF WATTS TENDS TO DECREASE WHILE FLOW OF VARS TENDS TO INCREASE VOLTAGE AT BUS 2 AND 3.
- REGENERATING CASE: FLOW OF WATTS TENDS TO INCREASE WHILE FLOW OF VARS TENDS TO DECREASE VOLTAGE AT BUS 2 AND 3.

RESULT: GREATLY REDUCED VOLTAGE SWINGS AT BUS 2 & 3
Controlling Voltage with Reactive Power

- Power delivery Equation:
 \[Es^2 = Er^2 + I^2 \left(R^2 + X^2 \right) + 2 \{ PR + QX \} \]
- \(Q / P \) is set by the load power factor
- \(R / X \) is set by the power system
- If we Ignore the very small term \(I^2 \left(R^2 + X^2 \right) \) & set \(-Q / P = X / R \)
 then \(PR = -QX \), and the 3\(^{rd}\) term becomes \(\{-QX + QX\} = 0 \)
- Result: voltage swing at load is minimized

Es = Per-unit sending voltage
Er = Per-unit receiving Voltage
I = per-unit amps
P = Per Unit real power
Q = per unit reactive power
R = per unit resistance
X = Per Unit Reactance
Modern 7 Unit Dragline MG Set
Overall 7 Unit Dragline MG Set

- Motion generators share common shaft.
- Sync Motor provides or absorbs net power.
DL Sync Motor Rotors & Stator

Rotor Drive End
Slip Ring End [before slip-ring installation]
Three-Phase Stator
AC Stator & Rotor Field Connections

HV Junction Box
With Surge Caps & Arrestors

Rotor DC Slip Rings
Dragline Real & Idealized Power Cycle

Sync Motor Loading

Peak Hoist DC kW +
Peak Swing DC kW / effic. / 2.5 pull out margin @95% volts

Max Regen 60% x peak motoring
Sync Motor Basics

• Compare to induction Motors
• Electrical Characteristics
 ✓ Starting
 ✓ V Curves & Circle Diagrams
 ✓ Reactive Power Control
• Field Excitation –
 ✓ Power factor control
 ✓ Peak Torque requirements
• Sync motor construction
Sync Motors vs Induction Motors

- Motor Models
- Field – separate vs induced
- Starting
- Running
- Torque production
Induction Motor Model

- AC Power on stator sets up rotating field magnetic flux
- Rotor acts as shorted transformer secondary, current produces rotor flux, torque results
- Rotor voltage dependent on difference between stator wave & rotor rpm = slip \(NO SLIP = NO POWER! \)
- Power Factor is **always lagging**
Typical Induction Motor Torque Profiles

- **Rated Torque**
- **Rated Slip RPM** = Sync - Rated RPM
- **Peak Torque** ~ \(V^2 / [2(X1 + X2)ωb] \)
- **Slip At BDT** ~ \(r2/(X1 + X2) \)
- **Starting Amps** ~ \(V/(X1 + X2) \)
- **Starting Tq** ~ \((r2/ωb)*[V/(X1 + X2)]^2 \)
- **VnL Amps** ~ \(V/Xm \)

AC Induction Motor

![Diagram of AC Induction Motor](Diagram)
Sync Motor Construction
4-Pole Example

• Three phase stator field
• DC field on rotor poles
• DC Fields fed from brushes through sliprings
• Sync RPM = \(\frac{120 \times \text{Freq}}{\# \text{Poles}} \)

 for 60 Hz Systems, 6-pole DL MG Sets

 \(120 \times 60 / 6 = 1200 \)
Synchronous Motor Model - Starting

- AC Power on stator sets up rotating field magnetic flux
- For starting, rotor amortiseur acts as shorted transformer secondary, current produces rotor flux like induction motor
- Torque produced accelerates load to near sync speed
- DC field poles shorted by “discharge resistor during start
- Near sync speed, DC field is applied, rotor syncs to line
Typical Sync Motor Starting Curves

MG Set Breakaway ~10-20%
Notes on Sync Motor Starting - 1

- Speed of 95-97% is typical field application point
- “Best Angle” field application is not needed for Dragline MG sets – timed application is effective & simpler
- Turning on the fields too soon can create excessive torques at “lock in” to synchronous speed
- **Open circuit fields** during start creates high voltages [10,000 volts or more] – damage to fields, slip rings!
 ✓ Either a short circuit or a resistor should be used during start.
 ✓ Using an optimal resistor can give 30-50% more start torque
- “Thyrite” voltage surge protectors act as backup to resistors and contactors across the fields
Notes on Sync Motor Starting - 2

- Field application Contactors connect DC before discharge path breaks.
- "Reluctance torque" is produced by attraction of rotor iron to rotating stator field near synchronizing – aids synch process.
- Sync Motors are stressed by starting – design limit is 2 cold starts per hour.
- 600% inrush, @15-20% pf is typical.
After Synchronizing – With DC Field

- Rotor follows stator magnetic wave at sync RPM
- Magnetic Coupling between Stator & Rotor:
 - Like an elastic band
 - Torque “stretches” band and rotor trails stator by an angle called the torque angle δ
Sync Motor Model
Fully Running

Effect of DC Field

- Sync Motor KVAR
 - Exported with strong DC field [leading pf]
 - Imported with weaker field [lagging pf]
- Increases torque capability [power output]
Sync Motor Reactive Power

- Motors are rated both in kVA and HP [or kW] and PF
- Typically 1.0 PF or 0.8 lead PF
- Excavator MG sync motors:
 - NNNN HP, 0.8 pf
 - 250% pullout torque at 0.95 volts
 - 6-pole, 1200 RPM [1000 RPM on 50 Hz]
Sync Motor Capability “Vee” Curves

- If excitation too low, motor pulls out or pushes out of sync
- As load increases field strength must increase to maintain power factor
- Field control MUST move field strength to follow load
- High field amps is OK but RMS must be < 1.0 pu

Per unit field, rated = 185 amps

Armature AMPS, rated = 334 amps

Peak Load Example: 250% load, 0.90 lead pf 168% field

4000 HP, 250% Pullout Torque, 6.6 kV, 50 Hz
Sync Motor Capability Curves

• Another way of showing sync capability.
• Same notes as shown on VEE curve

100% kw, 0.80 pf, 100% Field

Sync Motor Capability Curves

Another way of showing sync capability.
Same notes as shown on VEE curve

100% kw, 0.80 pf, 100% Field

Sync Motor Capability Curves

Another way of showing sync capability.
Same notes as shown on VEE curve

100% kw, 0.80 pf, 100% Field
Sync Rotor Power Curve

- Curve applies to a particular level of field generated volts \([E_f]\) and Terminal Volts \([V_1]\)
- Stronger \(E_f\) or changing \(V_1\) affects max power
- Power [torque] past 90 deg will result in de-sync
Sync Motors & Torque Production

Motoring Torque
Rotor Trails Stator Wave

Regen Torque
Rotor Leads Stator Wave

ROTOR Torque Angle
< 90 DEGREES IS STABLE

\[P = 3 \times (|V_1| \times |E_r|) \times \sin(\delta) / X_d \]
Vector Relationships

Generating

Motoring

PF Angle [lead]

Torque Angle
Summary

• Sync Motor provides kW to generators but can independently generate KVAR [reactive power]

• Reactive power flow opposite of kW helps hold voltage at DL steady.
Sync Excitation Control Scheme Evolution

1. Fixed Field
2. Fixed Source with Stepped resistance in fields
3. Power Factor Regulators
 - Saturable Reactor
 - Solid State op-amp & thyristor
4. kW vs KVAR regulator
5. Field current vs kW regulator

Can’t respond to digging cycle

Each have strengths and weaknesses
Why Not Simply Regulate Voltage?

If Draglines L3 and L4 are both set to regulate voltage at the same source [Bus 2] – they will likely be unstable and “fight” each other.
Sync Reactive Regulating Schemes

A. POWER FACTOR REGULATOR
Single PF setting with minimum field clamp.

B. WATT-VAR REGULATOR
Multiple break slope VAR vs Input KW

C. FIELD CURRENT VS KW [POWER TRAK] REGULATOR
Multiple break slope Sync Field Amps vs AC kW

D. ENHANCED POWER TRAK REGULATOR
Multiple break slope Sync Field Amps vs DC kW with AC kW fixed offset
Power Factor Regulator
Simplified Representation
Pure “Power-Factor” Regulator
Calculated Performance

\[E_s = 1.075 \]
\[Z = 0.06 + j \cdot 0.16 \]

\[PF = \frac{Q}{P} = \frac{R}{X} \]

Constant regulated power factor only creates symmetrical voltage drop or rise!
Watt-VAR [KVAR vs Kw] Regulator
Simplified Representation
kW vs Field Current [Power-Trak] Regulator
Simplified Representation – Any technology
Sync Field Current vs Kw Regulator [Power-Trak]
Advantages vs PF or WATT-VAR Regulators

- Lower Overall Cost
- Easier to understand, easier to adjust
- Better voltage regulation from:
 - Independent regulation of motoring and regen allows lower field amps at light load
 - As line voltage from utility side drops, sync motor automatically produces more compensating kVARs to hold voltage.
Enhanced Power Trak Regulator

- DC kw used as reference
- Eliminates delay associated with sync field to AC power quantities
- Reduces stimulation of 2 – 3 Hz Sync-MG oscillations
- Includes long term [10 minute time constant] integration of actual variations in system – to compensate for changes
Details on Power Trak [with DC-EXX Implementation]

- **Rx3i Controller Reference Shaping**
 - **SYNC FIELD CURRENT**
 - [-] REGENERATING KW
 - [+] MOTORING KW

- **POWER TRAK REGULATOR**
 - SYNC FIELD CURRENT
 - VS AC DRAGLINE KW
Gotchas In Sync Motor Excitation

- Weak power systems
- Customer or utility specs
- Pit configurations that change
- Oscillations / instability
DL Sync Motors – on Weak Power Systems

- For weak systems, either supply [Z2] or mine & pit distribution [Z3] impedances are high
- Sync motors at DL have limit on reactive power available
- If voltage swing at DL bus 3 exceeds -5% + 10% of motor rating, trip or damage can result
- Excitation Control is usually set up for best voltage control at Bus 3.
Pit Conditions Changing

- When Draglines are moved to new digging areas, Z3 [pit distribution impedance changes.
- Field Excitation Control set up for best voltage control at Bus 3 may have to change to keep Bus 3 volts within -5% + 10% motor limits.
Sync Motor MG Set Natural Frequency

- Sync Motors all have a natural frequency – like a spring and mass.
- Natural frequency f_n of a connected motor is approximately:

$$f_n = \frac{35200 \text{ RPM}}{\sqrt{\frac{Pr \times f}{WK^2}}}$$

- For Dragline MG sets [sync motor plus DC gens] this natural frequency calculates to 2-3 Hz.
- Increasing field strength “stiffens” the spring, but does not change the natural f_n.
- Impact loading on motor can “bounce the spring”.

Swing from Motor to Regen Power
Stimulated 2 Hz with Low Damping
Sync Motors 2 Hz Example

Swing from Motor to Regen Power
Stimulated 2 Hz with Low Damping
2 Hz Rotor Power – Where Can It Go?

- Disturbance power flows into power system!
- Amortiseur winding provides damping torque.
2 Hz MG Set Resonance Effects

- Sudden load impacts shift sync motor power [torque] angle
- Rotor overshoots, swings back and forth.
- Rotor angle pushes watts and vars in and out of dragline sometimes in huge swings
- Voltage swings can trip off dragline and nearby equipment
Example Traces of 2 Hz Phenomenon
[before regulator modifications]

1. Freq = 1/0.467 = 2.14 Hz
2. kW Transducer is not lying! Rotor oscillations are really causing wild power swings

Large power swings show up at trail cable as measured by PTs

Rotor amps follow kW feedback with 2 hz

Western Energy Co Coalstrip, MT DL3124
Example Traces of 2 Hz Phenomenon

[after regulator modifications]
Notes & Experience with 2 Hz Problems

- All sync MG sets have 2-3 Hz resonance!
- Amortiseur windings of low starting current motors [400-450% vs standard 600%] have low damping and prone to worse 2 Hz problems.
- Weak pit feeder gives low damping – worsens 2Hz.
- Using DC kW as field amps reference has shown to be best in 2 Hz performance and voltage stability
- High forcing [ratio of exciter max volts to sync field hot drop] helps.
Sync Excitation Control Hardware Evolution

- Rotating Exciters with
 - Fixed Field - resistor off 120 volt house exciter
 - Multi-step Contactors & Resistors off 120 volt house exciter
 - Dedicated 230 volt sync exciter with Saturable Reactor field control
- Solid State op-amp & direct analog thyristor exciter
- Digital thyristor exciter with reactive power control in firmware.
- PLC based field excitation reference control
- IGBT based exciters
Thyristor Sync Exciter

Thyristor Non-Reversing Plugging Exciter

- 120 volt hot drop max
- 240 - 460 VAC
- 3-ph
- T1
- 300 - 550 VDC

Thyrite [Typical]
Dragline MG Set **DC-EXX**
IGBT System Block Diagram

- **Aux AC Supply**
- **Main AC Supply**
- **Sync. Motor**
- **Motor Exciter**
- **Diode Rectifier**
- **MG Set**
- **Gen Exciter**
- **DC Gen**
- **Shaft**
- **Generator Field DC Bus**
- **To other generators**
- **Motor Field DC Bus**

Western Mining Electrical Association - May 2009
We Drive Industry
IGBT Based Sync Exciter

SPECIAL CONFIGURATION FOR HIGH FORCING CURRENT FIELDS

[Diagram showing IGBT based synchronous excitation system with details on current ratings and control methods.]

165 amp max each circuit RMS
Peaks at 1.8 PU max, < 5 sec, each 60 sec

600 VDC Mot flid bus

PLC Watt-VAR or Power-Trac Field
Current Regulator

Sync Mot DC-EXX

Sync Mot DC-EXX

Thyrist Typical

Thyrist Typical

165 amp max each circuit RMS
Peaks at 2.0 PU max, < 5 sec, each 60 sec

600 Amp DC-EXX Exciter

PLC Watt-VAR or Power-Trac Field
Current Regulator

Sync Mot DC-EXX

Sync Mot DC-EXX

Thyrist Typical

Thyrist Typical

600 VDC Mot flid bus
Motor & Gen AC / DC Converter

- 435 VAC 3 Phase in
- 600 VDC out
- 350 amp 6-pulse diode
- 3 thyristor legs for soft on, overcurrent protection.
- Includes energy absorbing chopper
- Feeds two overhead buses at cabinet top
Sync Motor Cabinet

- 300 Amp Exciter [with same control as 150 amp]
- Fed from 600 volt DC source for high forcing
- Traditional three-pole application contactor
- Fed from DC bus above cabinet
Overhead DC Bus

- 600 VDC, two busses
- Independent feed for motor and gen exciters
- Feed for each exciter is dropped by cable into enclosure
- Excess energy absorbed by converter braking chopper.
- Safety Provisions:
 - Disconnects
 - Discharge contactor
 - Voltage presence lights
- Voltage held to 725 volts even when AC feed is lost
Sync Cabinet Details

- DC Decoupling Reactors
- Isolation Switches
- dv/dt Filter Reactors
- 300 Amp Exciters
- Field Application Contactors
Sync Motor Protection
Examples From Recent Systems

<table>
<thead>
<tr>
<th>Protection Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stator overcurrent & over RMS</td>
<td>369 Motor Protector</td>
</tr>
<tr>
<td>Out of Step</td>
<td>369 Motor Protector – power factor trip</td>
</tr>
<tr>
<td>Field Voltage Surges</td>
<td>Discharge resistor, crowbar [IGBT Exciter], Thyrite</td>
</tr>
<tr>
<td>Stator voltage surges</td>
<td>Surge Capacitors, Arrestors</td>
</tr>
<tr>
<td>Winding & Bearing Over Temp</td>
<td>RTDs into 369 Motor Protector</td>
</tr>
<tr>
<td>Field Overcurrent – single and multiple fields per source</td>
<td>Exciter overcurrent Thermal OL relay per field</td>
</tr>
</tbody>
</table>
Thanks!

Office Location:

TM GE Automation Systems, LLC
1325 Electric Road Roanoke, VA 24018 [Office]
2060 Cook Drive Salem VA, 24153 [Mailing]
USA
www.tmeicge.com